Programming/Algorithms: Difference between revisions

From etwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
{{Note|Adapted from: https://www.bigocheatsheet.com/ }}
== Pseudocode ==


=== Binary Tree Search ===
<pre>
Iterative-Tree-Search(x, key)
  while x ≠ NIL and key ≠ x.key then
    if key < x.key then
      x := x.left
    else
      x := x.right
    end if
  repeat
  return x
</pre>
[https://en.wikipedia.org/wiki/Binary_search_tree#Iterative_search Source]
== Big O Notation ==
{{Note|Adapted from [https://www.bigocheatsheet.com/ Big-O Cheat Sheet] }}


{| class="wikitable"  
{| class="wikitable"  

Revision as of 16:32, 18 January 2023

Pseudocode

Binary Tree Search

Iterative-Tree-Search(x, key)
   while x ≠ NIL and key ≠ x.key then
     if key < x.key then
       x := x.left
     else
       x := x.right
     end if
   repeat
   return x

Source


Big O Notation

Adapted from Big-O Cheat Sheet
Data Structure Operations
Data Structure Time Complexity Space Complexity Notes
Average -> Worst
Access Search Insertion Deletion
Array Θ(1) -> O(1) Θ(n) -> O(n) Θ(n) -> O(n) Θ(n) -> O(n) O(n)
Stack Θ(n) -> O(n) Θ(n) -> O(n) Θ(1) -> O(n) Θ(1) -> O(n) O(n)
Queue Θ(n) -> O(n) Θ(n) -> O(n) Θ(1) -> O(n) Θ(1) -> O(n) O(n)
Linked List Θ(n) -> O(n) Θ(n) -> O(n) Θ(1) -> O(n) Θ(1) -> O(n) O(n)
Double Linked List Θ(n) -> O(n) Θ(n) -> O(n) Θ(1) -> O(n) Θ(1) -> O(n) O(n)
Hash Table N/A Θ(1) -> O(n) Θ(1) -> O(n) Θ(1) -> O(n) O(n)
Binary Search Tree Θ(log(n)) -> O(n) Θ(log(n)) -> O(n) Θ(log(n)) -> O(n) Θ(log(n)) -> O(n) O(n)
B Tree Θ(log(n)) -> O(log(n)) Θ(log(n)) -> O(log(n)) Θ(log(n)) -> O(log(n)) Θ(log(n)) -> O(log(n)) O(n) Self-balancing
Array Sorting Algorithms
Data Structure Time Complexity Space Complexity Notes
Best Average Worst
Bubble Sort Ω(n) Θ(n^2) O(n^2) O(1)
Quicksort Ω(n log(n)) Θ(n log(n)) O(n^2) O(log(n))
Mergesort Ω(n log(n)) Θ(n log(n)) O(n log(n)) O(n)
Insertion Sort Ω(n) Θ(n^2) O(n^2) O(1)
Timsort Ω(n) Θ(n log(n)) O(n log(n)) O(n) Combination of Mergesort and Insertion Sort made for Python
Heapsort Ω(n log(n)) Θ(n log(n)) O(n log(n)) O(1)